added starts of NLP processing using NLI model

This commit is contained in:
samerbam 2023-06-21 10:59:27 -04:00
parent 9b70ea6a22
commit f9d54838d8

View File

@ -1,4 +1,98 @@
# Natural Language Processing using something like https://spacy.io
# THIS WORKS REALLY WELL FOR WHAT WE NEED: https://huggingface.co/facebook/bart-large-mnli
# Zero Shot Classification - Natrual Language Inference
# basically this means we can list all the different skill names and the model will give us a
# percentage probability that we are talking about each of them. We should be able to take the top
# value and pass valid information from the query into the skill class after extracting information
# using another model for tokenization. This took me an entire week of research to figure out -_-
# this will allow us to figure out what the query means
# i.e we might not have to add the word "wolfram" into a query to send it to wolfram...
# import spacy
# nlp = spacy.load("en_core_web_sm")
# doc = nlp("What is the weather in toronto")
# for token in doc.ents:
# print(token)
# # if token.like_num:
# # print(tokenx)
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
# tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-mnli")
# model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
from transformers import pipeline
import spacy
# text = "When Sebastian Thrun started working on self-driving cars at Google in 2007, few people outside of the company took him seriously."
# doc = nlp(text)
class NLP:
def __init__(self, candidate_labels=[]):
self.candidate_labels = candidate_labels
self.classifier = pipeline("zero-shot-classification",
model="facebook/bart-large-mnli")
self.tokenclass = spacy.load("en_core_web_sm")
def get_skill(self, sentence):
return self.classifier(sentence, self.candidate_labels)
def get_named_entities(self, sentence):
return [[ent.text, ent.start_char, ent.end_char, ent.label_] for ent in self.tokenclass(sentence).ents]
# for ent in doc.ents:
# print(ent.text, ent.start_char, ent.end_char, ent.label_)
# return self.tokenclass(sentence)
if __name__ == "__main__":
nlp = NLP(['travel', 'cooking', 'dancing', 'weather'])
print('==')
print(nlp.get_skill("one day I will see the world"))
print("yay!")
print(nlp.get_skill("What is the weather today?"))
print('==')
print('====')
print(nlp.get_named_entities("one day I will see the world"))
print("yay!")
print(nlp.get_named_entities("What is the weather today in london?"))
print('====')
# sequence_to_classify = "one day I will see the world"
# candidate_labels = ['travel', 'cooking', 'dancing']
# print(classifier(sequence_to_classify, candidate_labels))
# import spacy
# from spacy.matcher import Matcher
# nlp = spacy.load("en_core_web_sm")
# matcher = Matcher(nlp.vocab)
# # Add match ID "HelloWorld" with no callback and one pattern
# pattern = [{"LOWER": "hello"}, {"IS_PUNCT": True}, {"LOWER": "world"}]
# matcher.add("HelloWorld", [pattern])
# doc = nlp("Hello, world! Hello world!")
# matches = matcher(doc)
# for match_id, start, end in matches:
# string_id = nlp.vocab.strings[match_id] # Get string representation
# span = doc[start:end] # The matched span
# print(match_id, string_id, start, end, span.text)